Free shipping on all orders in the USA!

Measure and Integral: An Introduction to Real Analysis (Chapman & Hall/CRC Pure and Applied Mathematics)

ISBN: 9780824764999
Publisher: CRC Press
Edition: 1
Publication Date: 1977-11-01
Number of pages: 288
  • Sale
  • Regular price $40.59

Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.

Description


This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.

Closely related topics in real variables, such as functions of bounded variation, the Riemann-Stieltjes integral, Fubini's theorem, L(p)) classes, and various results about differentiation are examined in detail. Several applications of the theory to a specific branch of analysis--harmonic analysis--are also provided. Among these applications are basic facts about convolution operators and Fourier series, including results for the conjugate function and the Hardy-Littlewood maximal function.

Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis for student interested in mathematics, statistics, or probability. Requiring only a basic familiarity with advanced calculus, this volume is an excellent textbook for advanced undergraduate or first-year graduate student in these areas.

Customer Reviews


MORE FROM THIS COLLECTION