Free shipping on all orders in the USA!

Maxwell Stresses and Dielectric Materials (Materials Science Foundations)

ISBN: 9780878494798
Publisher: Trans Tech Publications, Ltd.
Publication Date: 2008-05-08
Number of pages: 120
  • Sale
  • Regular price $907.85

Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.


Electrostatic stresses are a fascinating field where materials science, continuum mechanics and electrical engineering all come together. This is one of the reasons why the study of these so-called Maxwell stresses is so interesting.This treatment of electrostatic Maxwell stresses is restricted to the macroscopic description of the phenomenon, but an attempt is made to provide readers with methods and results which will allow them to deal with cases of low material symmetry, as well as with the effect of viscoelasticity upon the material response. Non-standard orientation of the material sample is studied in detail, because it is commonly encountered in laboratory practice, or is intentionally chosen so as to optimize a given device.A key advantage of the analysis presented in this book is seen in the fact that it permits the materials scientist who is planning experiments, or the technician who is designing novel electromechanical actuators, to predict the electrostatic stresses in terms of material constants. This also holds for the strains caused by electrostatic Maxwell stresses, and provides a valuable means for the analysis and optimization of electromechanical devices. The tools required to obtain these results are explained in detail. Where possible, a step-by-step derivation of the results is provided, so that the methods can be tailored to applications that are not treated in the book.In a nutshell, the contents are organized as follows: Chapters 2 to 6 deal with aspects of energy, momentum, symmetry and time. In chapter 7, some of the many applications of electrostatic Maxwell stresses are addressed in detail. Chapter 8 discusses the analogy with magnetostatic Maxwell stresses, and provides a more general derivation of the relationship between the force density and the corresponding stress tensor; thus reinforcing the chapter on momentum.

Customer Reviews